

Poster Board #1: Habitat and Restoration

Poster Title:	MHC's McEachran Property Restoration
Poster Presenter:	Kathy Murray, Habitat Conservation Specialist, Manitoba Habitat Conservancy
Co-Authors:	Dr. C. Emdad Haque, University of Manitoba
Abstract:	In 2016, Neil McEachran of Treherne, Manitoba, donated a quarter section of
	mixed-use farmland to the Manitoba Habitat Conservancy (MHC) for wildlife
	habitat protection. The land is primarily characterized as "go-back prairie," with
	several acres of wetland and woodland, and is located on imperfectly drained
	Black Chernozem soils. Since acquiring the property, MHC has worked to
	improve its health and productivity, starting with a wetland restoration in 2017
	and the installation of a cattle grazing fence in 2018. After several years of
	rotational grazing, small patches of warm-season native grasses have emerged
	within a dominant non-native cool-season grass community. Forage utilization
	and productivity are inconsistent, with some areas heavily grazed and others
	accumulating substantial litter. To improve plant community composition, several
	transects were seeded in the fall of 2024 with a reclamation blend of eight native
	grass species. Future management will focus on enhancing plant diversity,
	nutrient cycling, and hydrologic function while maintaining high-quality habitat
	for wildlife.

Poster Title:	The Prairie Landscape Inventory: A wall-to-wall native prairie model for
1 00001 110101	Saskatchewan
Poster Presenter:	Beth Dolmage, Saskatchewan Ministry of Environment
Co-Authors:	University of Saskatchewan
Abstract:	Accurate mapping of the current extent of native grassland is needed to develop
	public policy and tools to conserve remaining native grasslands and direct
	restoration efforts. The Prairie Landscape Inventory (PLI) is a wall-to-wall
	landcover map for Saskatchewan's prairies that separates native and tame
	grassland. The landcover classification maps were developed in different phases
	from 2019 to 2023 using machine learning algorithms and Google Earth Engine.
	Freely available 10-m resolution Sentinel satellite imagery was used as well as
	nearly 9,000 field samples from across all ecoregions that were collected using
	Survey123 through collaboration across the provincial government, and with
	partner organizations and volunteers.
	The PLI landcover map indicates that about 16% of the Prairie Ecozone is native
	grassland, compared to 55% cropland and 13% altered or tame grassland. The
	Mixed Grass Ecoregion and the Cypress Upland Ecoregion are the ecoregions
	with the highest percentage of native grassland (approx. 35% each). The Moist
	Mixed Grass and Aspen Parkland Ecoregions have the lowest percentage of native
	grassland (9% and 3% respectively). The accuracy of the landcover classification
	models ranged from 70% for the Moist Mixed Grassland to 92% for the Cypress
	Upland. The Government of Saskatchewan has published the landcover maps to
	view on HABISask and to download on GeoHUB.

Poster Board #2: Tools and Innovations

Poster Title:	How AI Empowers Everyone to Code, Analyze, and Innovate
Poster Presenter:	Jesse Lawrence, Good Lands Environmental
Abstract:	"The advent of generative AI has revolutionized accessibility to coding and data analysis tools, breaking down barriers for individuals with limited or no programming experience. By leveraging tools such as ChatGPT, Replit, Cursor, and GitHub, I have successfully developed Python scripts and web applications to perform data analysis, image processing, and more—all without a traditional coding background.
	This poster will showcase practical examples of how generative AI can empower consultants, land managers, and other stakeholders to adopt open-source solutions for native prairie restoration and reclamation projects. By demonstrating how these tools can facilitate innovative, cost-effective approaches to data analysis and problem-solving, this presentation aims to inspire broader adoption of AI-enabled workflows."

Poster Title:	Biochar Technology to Improve Soil Health While Achieving Net-Zero
	Emissions in Agroecosystems in Manitoba
Poster Presenter:	Natalia Daqui, Research Assistant, Assiniboine College
Abstract:	"Biochar is one of the natural farm waste management products with the
	potential to help improve soil health while achieving net-zero emissions in
	agriculture production systems. Biochar applications in agriculture are not new
	to soil science across the globe. Several reviews, technical fact sheets, and
	technical papers have been published in the past focused mostly on laboratories,
	greenhouses, and small-scale experiments, however, information on field-based
	studies is limited, especially in Canadian prairies. Biochar is known for
	supporting carbon sequestration in the soil retaining up to 5 times its weight in
	moisture. Incorporating biochar into the soil has many benefits, including
	converting the waste material to soil amendments and improving air, water
	quality, and soil health while protecting the environment from hazardous and
	toxic chemicals.
	Field trials in Manitoba are needed to investigate the effects of biochar product
	types, application rate, and techniques of incorporation on soil health while
	measuring CO2 emissions from the treated field plots. Research studies are
	underway at the Russ Edwards School of Agriculture and Environment, the
	Assiniboine College, Brandon, Manitoba in collaboration with Jonique Farms
	Ltd. St. Laurent, Manitoba to investigate biochar product types (What form of
	biochar is most beneficial to Manitoba soils?), its application rates (How much
	biochar is enough for Manitoba soils?) and methods of application (How we can
	best apply the product while limiting losses?) to improve soil health and fertility
	of Manitoba soils while reducing greenhouse gas emissions and returning waste
	carbon into the soil ecosystem."

Poster Board #3: Plant and Seed Selection

D 4 (D'4)	
Poster Title:	From nursery to native prairie: selecting species for supplementing seed
	collections
Poster Presenter:	Rachelle Lugar, Resource Management Technician, Parks Canada - Grasslands
	National Park
Abstract:	"Restoration projects in Grasslands National Park (GNP) require large quantities
	of native seed from diverse species ideally genetically adapted to the local
	environment. Meeting these seed demands is often limited by the accessibility of
	commercial growers who supply seed with local genetics. Alternatively, in-house
	native plant nurseries can supplement seed collection efforts with a reliable and
	accessible source of locally genetic seed. GNP established a native plant nursery
	in 2017 and has been harvesting nursery-grown seed since 2018.
	By comparing the collection effort and seed yield for wild versus nursery-
	, , , , , , , , , , , , , , , , , , , ,
	collected seed the strengths and weaknesses of implementing and utilizing native
	plant nurseries were examined. While collection effort and yield were considered
	key indicators for species selection, another aspect considered was the resource
	constraints throughout the season making certain species harder to collect in the
	park due to timing conflicts with other projects. Examining these factors will help
	understand the key considerations when selecting species for establishing in-house
	native plant nurseries.
	Due to the limited capacity of nurseries, intentional planning and species selection
	are necessary to optimize not only the amount and diversity of seed collected but
	also the resources dedicated to seed propagation and harvest. These considerations
	include the timing of seed maturity, collection window, accessibility of wild
	collection sites, labour limitations, and collection methods. This analysis of GNP's
	experience with our native plant nursery can provide insights to restoration
	practitioners seeking to establish their own native plant nursery as an alternative
	method of acquiring local genetic seed."
	I memor of reducing form before

Poster Title:	Applying landscape genomics tools to characterize Dalea (Prairie clover)
	adaptation in Western Canada
Poster Presenter:	Sean Asselin, Research Scientist, Agriculture and Agri-Food Canada
Abstract:	Dalea species (prairie clovers) are important nitrogen-fixing legumes in prairie
	ecosystems and are commonly employed in landscape restoration in Western
	Canada. Dalea candida (white prairie clover) and Dalea purpurea (purple prairie
	clover) are drought-tolerant, highly palatable, nutritious species for livestock and
	represent an opportunity to enhance the biodiversity of pastures and rangelands
	through the incorporation of novel native legumes. Work at Agriculture and
	Agri-Food Canada in Swift Current Saskatchewan has been focused on
	developing both source-identified and selection-track germplasm for prairie
	clovers to expand their use. We evaluated the population structure of both
	species using genotype-by-sequencing (gbs) to evaluate population structure and
	signals of local adaptation to climate to inform seed zones. Challenges and
	opportunities in the implementation of genomic tools for the development of
	native seed stock are discussed.

Poster Board #4: Urban Restoration

Poster Title:	From Grassland to Wetland: The Ecological Impacts of Saline Runoff on Soil
Toster Title.	and Vegetation
Poster Presenter:	Fred Berry, University of Saskatchewan
Co-Authors	Malin Hanson and Eric Lamb, University of Saskatchewan
Abstract:	Urban grasslands perform important ecosystem services and provide local
	opportunities for nature-based recreation, promoting human health and
	biocultural diversity. However, they face increasing threats from anthropogenic
	disturbances such as pollution. At the Peggy McKercher Conservation Area
	(PMCA) along the South Saskatchewan River in Saskatoon, Saskatchewan,
	highly saline runoff from a municipal snow storage facility (SSF) has caused
	annual seasonal flooding since ~2013. This anthropogenic flooding coincides
	with a marked shift in plant community from grasslands species to wetlands
	species. Recognizing that SSF runoff can impact abiotic soil conditions, I
	conducted a vegetation-soil interaction survey in a 1.2 ha study site
	encompassing the newly established wetland. I sought to investigate how SSF-
	altered soil conditions may be affecting the plant community at the PMCA.
	Wetland soil samples exhibited higher moisture content (+1.4x),
	electroconductivity (+3.0x), and soil organic matter (+1.5x), but lower pH (-0.2)
	and bulk density (-0.67x) (all $P < 0.001$). The wetland plant community had
	reduced biodiversity and was dominated by salt-tolerant, hydrophilic species
	(Typha x glauca and Phalaris arundinacea). These findings suggest that SSF
	runoff has initiated an ecological cascade, where increased soil moisture and
	salinity have driven a shift from grassland to wetland plant species, and the plant
	species have further altered soil conditions to create an acidic wetland ecosystem
	with high soil organic matter. Management strategies at the PMCA should
	prioritize balancing the wetland's role in SSF pollutant filtration with efforts to
	mitigate further soil degradation, such as reducing litter accumulation, until
	long-term remediation measures can be implemented.

Poster Title:	Prairie revival in the city: Ecosystem restoration and land-based learning at
Poster Presenter:	mâmawêyatitân centre Julia Janicki, Restoration of Natural Systems Program, Continuing Studies,
Toster Tresenter.	University of Victoria
Poster Co-Author	Jo Shepherd, mâmawêyatitân centre
Abstract:	Jo Shepherd, mâmawêyatitân centre Since 2023 mâmawêyatitân centre (mc) has been converting a patch of school grounds into a native prairie garden. There are two main project goals: 1. Replace underused lawn areas with native prairie plant communities on an urban site. 2. Establish a land-based learning space for the largely Indigenous student body, as well as Elders, Knowledge Keepers, residents from North Central and beyond. To date, mc staff, Scott classes, summer garden employees and community volunteers have removed invasive species through various mechanical methods, including solarisation and occultation. The site was prepared by breaking up the soil, adding mulch pathways and installing edging. Over 1500 native prairie seedlings sourced from ALCLA, Prairie Originals and Nature Regina donations have been planted to date. Students have helped collect, clean and store seeds for future sowing and/or donation. In partnership with the North Central Community Association, 10 community garden gatherings brought students, volunteers and community members together from May-October 2024. During these gatherings participants learned about the garden and helped with tasks such as weeding and watering. Plans for 2025 include expanding the garden into an adjacent section, adding additional seedlings, sowing native seeds collected from fall 2024, working with a Scott media student to create an infographic pamphlet, and hiring a full-time Canada Works summer student employee. Additionally, a colleague at U of R is
	working on securing funds for a student to assist with planning and hosting cultural teachings in the garden which will be free and open to the public.

Poster Board #5: Restoration and Habitat

Poster Title:	Grass banking provides habitat for multiple species at risk in southwestern
	Saskatchewan.
Poster Presenter:	Diego Steinaker, South of the Divide Conservation Action Program Inc.
1 oster 1 resenter.	(SODCAP Inc.)
Co-Authors:	Tom Harrison (SSGF), Krista Connick Todd (SODCAP Inc.), RJ Williamson
Co-rumors.	(SODCAP Inc.), Adrienne Tastad (SODCAP Inc.), Diego Steinaker (SODCAP
	Inc.).
Abstract:	During the last 6 years, the South of the Divide Conservation Action Program
Abstract.	Inc. (SODCAP Inc.), in partnership with the Saskatchewan Stock Growers
	Association (SSGA), Grassland National Park (GNP), and local ranches,
	developed and implemented grass-bank projects impacting 74,000 acres of
	public and private land, much of which is considered critical habitat for multiple
	species at risk. These grass-bank projects involve local ranchers from
	southwestern Saskatchewan and the Dixon community pasture, who utilize the
	prairie grass within the boundaries of Grassland National Park at a reduced rate,
	in exchange for achieving habitat targets for multiple species on the private
	lands and the community pasture they manage. Each year, a management team
	representing all the parties considers the outcomes of the previous season and
	discusses strategies to achieve objectives in the following season. One of the
	greatest challenges of the team is attempting to manage multiple habitats for the
	effective maintenance and recovery of multiple species. Habitat attributes
	preferred by species may overlap creating a competitive situation, and
	conflicting needs of species are difficult to address in multi-species approaches.
	Yet, multi-species management is desirable because single species management
	can reduce habitat quality for numerous other species. Overall, we found that
	grass banks provide meaningful benefits for both the environment and
	participating ranchers. Because the producers undertake conservation
	management on Park lands, Community pasture and privately owned lands, the
	conservation of habitat for multiple species is expanded more than GNP or the
	ranchers could achieve alone.
	Tanonois coura acine ve alone.

Poster Title:	Restoring cultivated lands back to native prairie species in southwestern
	Saskatchewan.
Poster Presenter:	Diego Steinaker, South of the Divide Conservation Action Program Inc.
	(SODCAP Inc.)
Co-Authors:	Krista Connick Todd (SODCAP Inc.), Tom Harrison (SSGF), Mindy Anderson
	(SSGF), Adrienne Tastad (SODCAP Inc.), Maggy Cooper (SSGF), Diego
	Steinaker (SODCAP Inc.)
Abstract:	For many grassland species, parcels of cultivated farmland beside native prairie
	create gaps in their movement patterns. Restoring prairie in these areas helps
	create habitat corridors, increasing grassland connectivity and allowing species to
	move freely. Reconverting cultivated farmlands to more diverse and perennial
	plant communities also improve the resistance and resilience of the ecosystem to
	perturbations and recover important processes and ecological functions including
	nutrient dynamics, carbon sequestration, hydrological regulation and erosion
	control. In recent years, the South of the Divide Conservation Action Program
	Inc. (SODCAP Inc.), in partnership with the Saskatchewan Stock Growers
	Foundation (SSGF) and other organizations, and with the support of a variety of
	funders including the U.S. National Fish and Wildlife Foundation and the Weston
	Family Foundation, signed conservation agreements with nine landowners to
	restore 1,725 acres of cultivated parcels back to native prairie species. The
	agreements included payments made to the producer to cover the costs of native
	seed mixes, seedbed preparation and weed control, and lost opportunities
	associated with resting seeded area up to 2 years post-establishment. In all cases,
	producers provided in-kind support. The length of the agreements is 10 to 20
	years, and grazing plans were developed for post establishment. Seeding back to
	native species is an expensive endeavor, and the returns to the producer via any
	additive sales of livestock are not always achieved in the short or medium term.
	Thus, appropriate incentives still need to be explored to encourage producers to
	restore the lands they are responsible for managing.

Poster Board #6: Woody Encroachment and Wild

Fires

Poster Title:	Managing for Shrub Encroachment on Native Mixed-grass Prairie
Poster Presenter:	Carol Graham, Rangeland Extension Specialist, Manitoba Habitat Conservancy
Co-Authors:	Dean Brooker, Souris River Watershed District Scott Hainsworth, Souris River Watershed District
Abstract:	"Native prairie in southwestern Manitoba is characterized as mixed-grass prairie, supporting a diversity of short and tall grass species. Mixed-grass prairie depends on natural disturbances such as fire and grazing to maintain the unique species richness, however in the absence of fire and/or in the presence of overgrazing, wolf willow (Elaeagnus commutata) and western snowberry (Symphoricarpos occidentalis) encroach onto the native prairie. As the shrub cover increases, plant species composition shifts to non-native species, most notably among the grasses, and biodiversity declines. Management for shrub encroachment to address declining biodiversity has included burning, however mowing has been a preferred strategy due to the flexibility it provides in accessing sites and timing applications. Multiple mowing applications at specific times of the growing season have proven effective at reducing shrub cover in the short term. Unfortunately, without ongoing management, shrub cover returns, and the restoration of native grasses becomes limited. Ongoing shrub management is ineffective for a landowner; therefore, mowing and herbicide application has been introduced as an alternate management strategy. Mowing reduces the shrub cover, while a directed herbicide application appears to reduce shrub presence for the longer term. In the absence of shrubs, growing conditions become favorable for native grasses, reestablishing the biodiversity unique to native mixed-grass prairie. Future implementation of the shrub management strategy will involve continued monitoring of plant community responses (native and non-native species) however initial applications suggest a viable means for addressing shrub encroachment."

Poster Title:	A critical review of the Western wildfire management techniques: Deconnecting
Poster Title:	A critical review of the Western wildfire management techniques: Reconnecting
-	Indigenous Knowledge in building Community Resilience
Poster Presenter:	Somashree Chattapadhya, Graduate Student, Natural Resource Institute,
	University of Manitoba
Co-Authors:	Dr. C. Emdad Haque, University of Manitoba
Abstract:	According to literature published over the past century, the Indigenous people
	have experienced direct and cultural suppression because of their reliance on
	wildland fire for livelihoods (Ponce-Calder´ on et al., 2022). In the colonial and
	post-colonial states fire suppression policy, oftentimes the Indigenous
	communities were criminalized with fines, imprisonment, and relocation that
	systematically excluded them from fire management strategies. This led to a
	gradual marginalization of the Indigenous worldview of interconnectedness,
	beliefs, governance systems, and their fire knowledge that are critical to maintain
	forest sustainability (Inturias et al., 2023).
	Indigenous cultures around the world place a high value on fire by viewing it as
	part of mother nature. Indigenous communities have been using fire as a means of
	subsistence for ages (Lewis 1988a; Huffman 2013). Burning savannas to make
	farming and hunting easier in Brazil (de Melo and Saito 2013), burning tropical
	grassland for livestock in African continent (Kull and Laris, 2009), protecting
	families from animals in Australian continent (Biddle et al., 2020; Beggs &
	Dalley, 2023) and burning Canadian boreal forest in the early spring or late
	summer to prolong the growing season (Lewis 1989) are all examples of the use
	of fire for landscape management and sustainable livelihoods.
	This poster paper will critically review how the existing fire management
	techniques are augmenting larger wildland fires and endangering the lives and
	livelihoods of the Indigenous communities, and how to respectfully reconnect
	with Indigenous and Western knowledge could be used as a tool to manage
	wildland fires.

